15,901 research outputs found

    Cylindrical wormholes with positive cosmological constant

    Get PDF
    We construct cylindrical, traversable wormholes with finite radii by taking into account the cut-and-paste procedure for the case of cosmic string manifolds with a positive cosmological constant. Under reasonable assumptions about the equation of state of the matter located at the shell, we find that the wormhole throat undergoes a monotonous evolution provided it moves at a constant velocity. In order to explore the dynamical nonlinear behaviour of the wormhole throat, we consider that the matter at the shell is supported by anisotropic Chaplygin gas, anti-Chaplygin gas, or a mixed of Chaplygin and anti-Chaplygin gases implying that wormholes could suffer an accelerated expansion or contraction but the oscillatory behavior seems to be forbidden.Comment: 5 pages, no figures. Accepted for publication in PRD. (http://link.aps.org/doi/10.1103/PhysRevD.88.027507

    Black holes in Einstein-Gauss-Bonnet gravity with a string cloud background

    Get PDF
    We obtain a black hole solution in the Einstein-Gauss-Bonnet theory for the string cloud model in a five dimensional spacetime. We analyze the event horizons and naked singularities. Later, we compute the Hawking temperature THT_{\mathrm{H}}, the specific heat CC, the entropy SS, and the Helmholtz free energy FF of the black hole. The entropy was computed using the Wald formulation. In addition, the quantum correction to the Wald's entropy is considered for the string cloud source. We mainly explore the thermodynamical global and local stability of the system with vanishing or non-vanishing cosmological constant. The global thermodynamic phase structure indicates that the Hawking-Page transition is achieved for this model. Further, we observe that there exist stable black holes with small radii and that these regions are enlarged when choosing small values of the string cloud density and of the Gauss-Bonnet parameter. Besides, the rate of evaporation for these black holes are studied, determining whether the evaporation time is finite or not. Then, we concentrate on the dynamical stability of the system, studying the effective potential for s-waves propagating on the string cloud background.Comment: 13 pages, 5 figures. References adde

    Dynamical variables in Gauge-Translational Gravity

    Full text link
    Assuming that the natural gauge group of gravity is given by the group of isometries of a given space, for a maximally symmetric space we derive a model in which gravity is essentially a gauge theory of translations. Starting from first principles we verify that a nonlinear realization of the symmetry provides the general structure of this gauge theory, leading to a simple choice of dynamical variables of the gravity field corresponding, at first order, to a diagonal matrix, whereas the non-diagonal elements contribute only to higher orders.Comment: 15 page

    Big brake singularity is accommodated as an exotic quintessence field

    Full text link
    We describe a big brake singularity in terms of a modified Chaplygin gas equation of state p=(\ga_{m}-1)\rho+\al\ga_{m}\rho^{-n}, accommodate this late-time event as an exotic quintessence model obtained from an energy-momentum tensor, and focus on the cosmological behavior of the exotic field, its kinetic energy and the potential energy. At the background level, the exotic field does not blow up whereas its kinetic energy and potential both grow without limit near the future singularity. We evaluate the classical stability of this background solution by examining the scalar perturbations of the metric along with the inclusion of entropy perturbation in the perturbed pressure. Within the Newtonian gauge, the gravitational field approaches a constant near the singularity plus additional regular terms. When the perturbed exotic field is associated with \al>0 the perturbed pressure and contrast density both diverge, whereas the perturbed exotic field and the divergence of the exotic field's velocity go to zero exponentially. When the perturbed exotic field is associated with \al<0 the contrast density always blows up, but the perturbed pressure can remain bounded. In addition, the perturbed exotic field and the divergence of the exotic field's velocity vanish near the big brake singularity. We also briefly look at the behavior of the intrinsic entropy perturbation near the singular event.Comment: 11 pages, no figures. Accepted for its publication in PR
    • …
    corecore